Keeping Your Data Safe

One of the greatest challenges of defending your data from those who might want it is the sheer size of the information you store or carry, and the ease by which it can be taken from you. Many of us carry entire histories of our contacts, our communications, and our current documents on laptops, or even mobile phones. That data can include confidential information of dozens, even thousands, of people. A phone or laptop can be stolen, or copied in seconds.

The United States is just one of many countries that seizes and copies data at borders. Data can be taken from you at roadblocks, grabbed from you in the street, or burgled from your house.

Just as you can keep your communications safer with encryption, you can also make it harder for those who physically steal data to unlock its secrets. Computers and mobile phones can be locked by passwords, PINs or gestures, but these locks do not help protect data if the device itself is seized. It's relatively simple to bypass these locks, because your data is stored in an easily readable form within the device. All an attacker needs to do is to access the storage directly, and the data can be copied or examined without knowing your password.

If you use encryption, your adversary needs not just your device, but also your password to unscramble the encrypted data—there's no shortcut.

It's safest and easiest to encrypt all of your data, not just a few folders. Most computers and smartphones offer complete, full-disk encryption as an option. Android offers it under its "Security" settings, Apple devices such as the iPhone and iPad describe it as "Data Protection" and turn it on if you set a passcode. On computer running Windows Pro, it's known as "BitLocker." 

BitLocker's code is closed and proprietary, which means it is hard for external reviewers to know exactly how secure it is. Using BitLocker requires you trust Microsoft provides a secure storage system without hidden vulnerabilities. On the other hand, if you're already using Windows, you are already trusting Microsoft to the same extent. If you are worried about surveillance from the kind of attackers who might know of or benefit from a back door in either Windows or BitLocker, you may wish to consider an alternative open source operating system such as GNU/Linux or BSD, especially a version that has been hardened against security attacks, such Tails or Qubes OS.

Apple provides a built-in full disk encryption feature on macOS called FileVault.  On Linux distributions, full-disk encryption is usually offered when you first set up your system. At the time this guide was updated, we do not have a full disk encryption tool for versions of Windows that do not include BitLocker that we can recommend.

Whatever your device calls it, encryption is only as good as your password. If your attacker has your device, they have all the time in the world to try out new passwords. Forensic software can try millions of passwords a second. That means that a four number pin is unlikely to protect your data for very long at all, and even a long password may merely slow down your attacker. A really strong password under these conditions should be over fifteen characters long.

Most of us are not realistically going to learn and enter such passphrases on our phones or mobile devices. So while encryption can be useful to prevent casual access, you should preserve truly confidential data by keeping it hidden from physical access by attackers, or cordoned away on a much more secure machine.

Create a Secure Machine

Maintaining a secure environment can be hard work. At best, you have to change passwords, habits, and perhaps the software you use on your main computer or device. At worst, you have to constantly think about whether you're leaking confidential information or using unsafe practices. Even when you know the problems, some solutions may be out of your hands. Other people might require you to continue unsafe digital security practices even after you have explained the dangers. For instance, work colleagues might want you to continue to open email attachments from them, even though you know your attackers could impersonate them and send you malware. Or you may be concerned that your main computer has already been compromised.

One strategy to consider is cordoning off valuable data and communications onto a more secure computer. Use that machine only occasionally, and when you do, consciously take much more care over your actions. If you need to open attachments, or use insecure software, do it on another machine.

If you're setting up a secure machine, what extra steps can you take to make it secure?

You can almost certainly keep the device in a more physically safe place: somewhere where you are able to tell if it has been tampered with, such as a locked cabinet.

You can install a privacy- and security-focused operating system like Tails. You might not be able (or want) to use an open source operating system in your everyday work, but if you just need to store, edit and write confidential emails or instant messages from this secure device, Tails will work well, and defaults to high security settings.

An extra, secure computer may not be as expensive an option as you think. A computer that is seldom used, and only runs a few programs, does not need to be particularly fast or new. You can buy an older netbook for a fraction of the price of a modern laptop or phone. Older machines also have the advantage that secure software like Tails may be more likely to work with them than newer models.

You can use the secure machine to keep the primary copy of confidential data. A secure machine can be valuable in cordoning off private data in this way, but you should also consider a couple of extra risks it might create. If you concentrate your most treasured information onto this one computer, it may make it more of an obvious target. Keep it well hidden, don't discuss its location, and don't neglect to encrypt the computer's drive with a strong password, so that if it is stolen, the data will remain unreadable without the password safe.

Another risk is the danger that destroying this one machine will destroy your only copy of the data.

If your adversary would benefit from you losing all your data, don't keep it in just one place, no matter how secure. Encrypt a copy and keep it somewhere else.

The highest level of protection from Internet attacks or online surveillance is, not surprisingly, not connecting to the Internet at all. You could make sure your secure computer never connects to a local network or Wifi, and only copy files onto the machine using physical media, like DVDs or USB drives. In network security, this is known as having an "air gap" between the computer and the rest of the world. Not many people go this far, but it can be an option if you want to keep data that is rarely accessed but you never want to lose. Examples might be an encryption key you only use for important messages (like "My other encryption keys are now insecure"), a list of passwords or instructions for other people to find if you are unavailable, or a backup copy of someone else's private data that has been entrusted to you. In most of these cases, you might want to consider just having a hidden storage device, rather than a full computer. An encrypted USB key kept safely hidden is probably as useful (or as useless) as a complete computer unplugged from the Internet.

If you do use the secure device to connect to the Internet, you might choose not to log in or use your usual accounts. Create separate web or email accounts that you use for communications from this device, and use Tor to keep your IP address hidden from those services. If someone is choosing to specifically target your identity with malware, or is only intercepting your communications, separate accounts and Tor can help break the link between your identity, and this particular machine.

A variation on the idea of a secure machine is to have an insecure machine: a device that you only use when you are going into dangerous places or need to try a risky operation. Many journalists and activists, for instance, take a minimal netbook with them when they travel. This computer does not have any of their documents, usual contact or email information on it, and so is less of a loss if it is confiscated or scanned. You can apply the same strategy to mobile phones. If you usually use a smartphone, consider buying a cheap throwaway or burner phone when travelling or for specific communications.

Last updated: 
2016-12-01
JavaScript license information